2 Complete Induction

Definition 1 (induction principle). If $M \subset \mathbb{N}$ has the properties
(i) $1 \in M$,
(ii) $n \in M$ implies that $n+1 \in M$,
then $M=\mathbb{N}$.
Definition 2 (induction principle). Let $n_{0} \in \mathbb{Z}$ and for $n \in \mathbb{Z}$ with $n \geq n_{0}$ let $A(n)$ be a proposition (depending on n). If
(i) $A\left(n_{0}\right)$ is true,
(ii) For all $n \in \mathbb{Z}$ with $n \geq n_{0}: A(n) \Rightarrow A(n+1)$,
then $A(n)$ is true for all $n \in \mathbb{Z}$ with $n \geq n_{0}$. Part (i) is called the basis, Part (ii) the inductive step. The assumption in the inductive step that $A(n)$ holds for some (arbitrary) $n \geq n_{0}$ is called the induction hypothesis.

Theorem 3 (geometric sum). If $n \in \mathbb{N}_{0}$ and $q \in \mathbb{R}$, then

$$
(1-q) \sum_{k=0}^{n} q^{k}=1-q^{n+1}
$$

Theorem 4 (sum of the first n natural numbers). If $n \in \mathbb{N}$, then

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

Definition 5 (factorial). For $n \in \mathbb{N}$ we define the factorial of n by

$$
n!=\prod_{k=1}^{n} k=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n
$$

Furthermore, we define $0!=1$.

Theorem 6 (number of permutations). There are n ! different possibilities of arranging n distinct objects in a sequence (the arragements are called permutations).

Definition 7 (binomial coefficient). For $n \in \mathbb{N}_{0}$ and $k \in \mathbb{N}_{0}$ with $k \leq n$:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n \cdot(n-1) \cdot \ldots \cdot(n-k+1)}{k!} .
$$

Theorem 8 (number of subsets). If M is a set with n elements, the number of subsets of M with k elements is $\binom{n}{k}$.

Theorem 9 (addition of binomial coefficients). If $n \in \mathbb{N}_{0}$ and $k \in \mathbb{N}_{0}$ with $k \leq n+1$, then

$$
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} .
$$

Theorem 10 (binomial theorem). If $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$, then

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

