Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

2 Complete Induction

Definition 1 (induction principle). *If* $M \subset \mathbb{N}$ *has the properties*

- (*i*) $1 \in M$,
- (ii) $n \in M$ implies that $n + 1 \in M$,

then $M = \mathbb{N}$.

Definition 2 (induction principle). Let $n_0 \in \mathbb{Z}$ and for $n \in \mathbb{Z}$ with $n \ge n_0$ let A(n) be a proposition (depending on n). If

- (i) $A(n_0)$ is true,
- (ii) For all $n \in \mathbb{Z}$ with $n \ge n_0$: $A(n) \Rightarrow A(n+1)$,

then A(n) is true for all $n \in \mathbb{Z}$ with $n \ge n_0$. Part (i) is called the basis, Part (ii) the inductive step. The assumption in the inductive step that A(n) holds for some (arbitrary) $n \ge n_0$ is called the induction hypothesis.

Theorem 3 (geometric sum). *If* $n \in \mathbb{N}_0$ *and* $q \in \mathbb{R}$ *, then*

$$(1-q)\sum_{k=0}^{n}q^{k}=1-q^{n+1}.$$

Theorem 4 (sum of the first *n* natural numbers). *If* $n \in \mathbb{N}$ *, then*

$$\sum_{k=1}^n k = \frac{n(n+1)}{2}.$$

Definition 5 (factorial). *For* $n \in \mathbb{N}$ *we define the* factorial *of* n *by*

$$n! = \prod_{k=1}^{n} k = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n.$$

Furthermore, we define 0! = 1*.*

Theorem 6 (number of permutations). *There are n! different possibilities of arranging n distinct objects in a sequence (the arragements are called permutations).*

Definition 7 (binomial coefficient). *For* $n \in \mathbb{N}_0$ *and* $k \in \mathbb{N}_0$ *with* $k \leq n$:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k!}.$$

Theorem 8 (number of subsets). If *M* is a set with *n* elements, the number of subsets of *M* with *k* elements is $\binom{n}{k}$.

Theorem 9 (addition of binomial coefficients). *If* $n \in \mathbb{N}_0$ *and* $k \in \mathbb{N}_0$ *with* $k \le n + 1$ *, then*

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

Theorem 10 (binomial theorem). *If* $n \in \mathbb{N}$ *and* $x, y \in \mathbb{R}$ *, then*

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$